This sample notebook demonstrates how to programatically download and visualize air quality data stored on the Open Storage Network
df_BME280 = CSV.File (download ("https://ncsa.osn.xsede.org/ees230012-bucket01/AirQualityNetwork/data/raw/Central_Hub_1/2023/03/02/MINTS_001e06318c91_BME280_2023_03_02.csv" )) |> DataFrame
965×5 DataFrame
940 rows omitted
1
2023-03-02 21:17:50.113837
24.88
96918.0
47.0
373.48
2
2023-03-02 21:18:00.131724
24.89
96913.0
47.0
373.91
3
2023-03-02 21:18:10.164866
24.88
96911.0
47.0
374.09
4
2023-03-02 21:18:20.181817
24.87
96914.0
47.0
373.83
5
2023-03-02 21:18:30.213784
24.88
96911.0
47.0
374.09
6
2023-03-02 21:18:40.229651
24.87
96914.0
47.0
373.83
7
2023-03-02 21:18:50.260480
24.88
96916.0
47.0
373.66
8
2023-03-02 21:19:00.276342
24.88
96910.0
47.0
374.17
9
2023-03-02 21:19:10.307070
24.88
96901.0
47.0
374.95
10
2023-03-02 21:19:20.322728
24.88
96901.0
47.0
374.95
11
2023-03-02 21:19:30.338601
24.88
96902.0
47.0
374.87
12
2023-03-02 21:19:40.369151
24.88
96903.0
47.0
374.78
13
2023-03-02 21:19:50.384637
24.89
96893.0
47.0
375.64
⋮
⋮
⋮
⋮
⋮
⋮
954
2023-03-02 23:58:07.902762
27.38
96629.0
43.0
398.45
955
2023-03-02 23:58:17.919015
27.38
96621.0
43.0
399.15
956
2023-03-02 23:58:27.950124
27.38
96621.0
43.0
399.15
957
2023-03-02 23:58:37.981368
27.38
96627.0
43.0
398.63
958
2023-03-02 23:58:47.997385
27.37
96620.0
43.0
399.23
959
2023-03-02 23:58:58.028589
27.36
96624.0
43.0
398.88
960
2023-03-02 23:59:08.044753
27.36
96631.0
43.0
398.28
961
2023-03-02 23:59:18.075909
27.36
96619.0
43.0
399.32
962
2023-03-02 23:59:28.092216
27.36
96616.0
43.0
399.58
963
2023-03-02 23:59:38.123351
27.37
96610.0
43.0
400.1
964
2023-03-02 23:59:48.139750
27.37
96613.0
43.0
399.84
965
2023-03-02 23:59:58.170898
27.35
96622.0
43.0
399.06
df_IPS7100 = CSV.File (download ("https://ncsa.osn.xsede.org/ees230012-bucket01/AirQualityNetwork/data/raw/Central_Hub_1/2023/03/02/MINTS_001e06318c91_IPS7100_2023_03_02.csv" )) |> DataFrame
9715×15 DataFrame
9690 rows omitted
1
2023-03-02 21:18:03.686980
186348
101116
61137
6795
1036
10
0
0.155705
2.4369
8.82213
14.4999
28.0323
29.1087
29.1087
2
2023-03-02 21:18:04.756650
185877
100817
60893
6789
1036
10
0
0.155312
2.42976
8.78947
14.4623
28.0025
29.149
29.149
3
2023-03-02 21:18:05.682043
185455
100555
60617
6783
1040
16
0
0.154959
2.4235
8.75437
14.4225
28.0176
29.7319
29.7319
4
2023-03-02 21:18:06.679952
185011
100310
60232
6760
1041
17
0
0.154589
2.4176
8.70829
14.357
27.959
29.8246
29.8246
5
2023-03-02 21:18:07.677839
184486
99999
59783
6724
1042
17
0
0.154149
2.41013
8.65389
14.2727
27.8843
29.7314
29.7314
6
2023-03-02 21:18:08.674922
184024
99727
59374
6693
1041
18
0
0.153763
2.40361
8.60465
14.1975
27.7991
29.7457
29.7457
7
2023-03-02 21:18:09.672863
183592
99472
58951
6660
1038
19
0
0.153403
2.39749
8.55434
14.1197
27.6844
29.7084
29.7084
8
2023-03-02 21:18:10.670898
183114
99167
58509
6623
1035
16
0
0.153003
2.39022
8.50093
14.0356
27.5565
29.3077
29.3077
9
2023-03-02 21:18:11.667976
182595
98817
58055
6587
1032
10
0
0.152569
2.3819
8.44521
13.9493
27.4383
28.5185
28.5185
10
2023-03-02 21:18:12.666070
182069
98491
57559
6542
1028
7
0
0.15213
2.37411
8.38565
13.8521
27.2784
28.071
28.071
11
2023-03-02 21:18:13.663993
181435
98084
56997
6480
1013
5
0
0.1516
2.36438
8.31723
13.7318
26.9703
27.5012
27.5012
12
2023-03-02 21:18:14.661008
180749
97619
56413
6414
995
2
0
0.151027
2.35333
8.24519
13.6052
26.6081
26.8255
26.8255
13
2023-03-02 21:18:15.658345
180081
97165
55831
6350
973
0
0
0.150469
2.34253
8.17358
13.4801
26.198
26.2421
26.2421
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
9704
2023-03-02 23:59:48.539369
121501
59068
11955
2241
270
0
0
0.101522
1.43411
2.68273
4.55575
8.08815
8.08815
8.08815
9705
2023-03-02 23:59:49.537345
121060
58771
11910
2222
264
0
0
0.101154
1.42705
2.67102
4.52807
7.9793
7.9793
7.9793
9706
2023-03-02 23:59:50.535837
120637
58478
11872
2205
258
0
0
0.1008
1.42007
2.66001
4.50269
7.88151
7.88151
7.88151
9707
2023-03-02 23:59:51.534259
120133
58104
11802
2183
252
0
0
0.100379
1.41122
2.64386
4.46834
7.76922
7.76922
7.76922
9708
2023-03-02 23:59:52.532713
119602
57736
11719
2158
246
0
0
0.0999347
1.40247
2.62647
4.43038
7.64456
7.64456
7.64456
9709
2023-03-02 23:59:53.530269
119180
57461
11664
2140
240
0
0
0.0995824
1.39592
2.61415
4.4026
7.54067
7.54067
7.54067
9710
2023-03-02 23:59:54.528673
118754
57177
11616
2121
234
0
0
0.0992267
1.38914
2.60234
4.37504
7.43885
7.43885
7.43885
9711
2023-03-02 23:59:55.526219
118367
56925
11570
2102
229
0
0
0.0989031
1.38314
2.59152
4.34813
7.3423
7.3423
7.3423
9712
2023-03-02 23:59:56.524240
118005
56683
11505
2081
224
0
0
0.0986006
1.37738
2.57906
4.31805
7.24628
7.24628
7.24628
9713
2023-03-02 23:59:57.522713
117585
56398
11414
2056
218
0
0
0.0982495
1.37061
2.56273
4.28131
7.13573
7.13573
7.13573
9714
2023-03-02 23:59:58.520251
117207
56148
11337
2039
213
0
0
0.097934
1.36463
2.54869
4.25284
7.03624
7.03624
7.03624
9715
2023-03-02 23:59:59.518143
116909
55961
11277
2027
208
0
0
0.0976852
1.36018
2.53798
4.2321
6.95184
6.95184
6.95184
This is a sample markdown string
\[\begin{equation} \int_a^b f(x)dx \end{equation}\]
We can do equations!
Further, we can impute values. For example, the maximum PM 2.5 concentration for 5-2-2023 was 33.20207035 μg/m³
Let’s create a simple plot:
That plot looks great! Let’s now demonstrate the use of notebook parameters with papermill. In the first cell we define the variable test_parameter
to the value 3.14
. At execution time, the value is now 42